Image restoration

莊子肇 副教授 中山電機系

Enhancement vs. Restoration

representation

sensing environment

■ Subjective

← → Objective

■ No quantitative measures

← ■ Mathematical, model dependent quantitative measures

Motivation

• Remove, or at least reduce, blur and noise in a digital image.

• Restoration attempts to recover an image that have been degraded by using a priori knowledge of the degradation function.

Image Degradation/Restoration Model

Degradation model with additive noise

$$g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$$

 $G(u, v) = H(u, v) \times F(u, v) + N(u, v)$

Goal of restoration

Goal of restoration: to make $\hat{f}(x, y) \sim f(x, y)$

Noise Models

- Noise arises during image acquisition and/or transmission.
- Random Noise
 - Noise is independent of location and time.
 - Can be described by probability density function (PDF)
- White noise
 - Constant power spectral density
 - Zero mean

Gaussian noise (normal noise)

$$p(z) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-(z-\overline{z})^2/2\sigma^2}$$

z: intensity of noise

 σ : standard deviation

Gaussian noise = white noise ??

More PDFs of noise

Rayleigh noise

When
$$z \ge a$$
, $p(z) = \frac{2}{b}(z-a)e^{-(z-a)^2/b}$ When $z \ge 0$, $p(z) = \frac{a^b z^{b-1}}{(b-1)!}e^{-az}$
When $z < a$, $p(z) = 0$ When $z < 0$, $p(z) = 0$

Gamma noise

When
$$z \ge 0$$
, $p(z) = \frac{a^b z^{b-1}}{(b-1)!} e^{-az}$
When $z < 0$, $p(z) = 0$

More PDFs of noise

Exponential noise

Uniform noise

Impulse (salt-andpepper) noise

Patterns of noisy images

Patterns of noisy images

Periodic Noise

- Spatially dependent noise
- Reduced by frequency domain filtering

Degraded X-ray image

Removal by notch filter

Inverse 2D-FT

Estimate of the Noise Parameters

- 由感測器的特性或規格說明加以評估
- 選定適當區域,運用平均值與標準差

$$\mu = \sum z_i p(z_i) \qquad \sigma^2 = \sum (z_i - \mu)^2 p(z_i)$$

Restoration filters

- Random noise only: spatial filtering
 - Mean filters
 - Order-statistic filters
 - Adaptive filters
- Periodic noise only: spectral filtering
 - Band-reject filters
 - Notch filters
- Non-identity degradation function

Restoration — in Spatial domain

• Assume the only degradation present in an image is noise.

$$g(x, y) = f(x, y) + n(x, y)$$
$$G(u, v) = F(u, v) + N(u, v)$$

Mean filters

• Arithmetic mean filter

$$\hat{f}(x,y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

• Geometric mean filter

$$\hat{f}(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$$

Mean filters

a b c d

FIGURE 5.7

(a) X-ray image. (b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3 . (d) Result of filtering with a geometric mean filter of the same size.

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Order-Statistics filters

• Median Filter

$$\hat{f}(x,y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

除此之外還有: max/min filter, midpoint filter,...

Adaptive filters

• Local noise reduction filter

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(x,y) - m_L]$$

g(x, y): the value of the noisy image at (x, y)

 σ_{η}^{2} : variance of the additive noise

 σ_L^{2} : local variance of pixels in S_{xy}

 m_L : local mean of pixels in S_{xy}

 S_{xy} : the rectangular filter region for (x, y)

If
$$\sigma_{\eta}^{2} = 0$$
?? If $\sigma_{L}^{2} = \sigma_{\eta}^{2}$?? If $\sigma_{L}^{2} > \sigma_{\eta}^{2}$??

Adaptive filters

a b c d

FIGURE 5.13

- (a) Image corrupted by additive Gaussian noise of zero mean and variance 1000.
- (b) Result of arithmetic mean filtering.
- (c) Result of geometric mean filtering.
- (d) Result of adaptive noise reduction filtering. All filters were of size 7×7 .

Restoration — in Frequency domain

• Band-reject Filter

Notch Filter

Please check slides of last topic for more examples...

Estimating degradation function

Model of linear, position-invariant degradation

$$g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$$

 $G(u, v) = H(u, v) \times F(u, v) + N(u, v)$

Estimation by observation

Observation

- -取影像中具有強烈訊號的子影像 $g_s(x,y)$
- -建立與 $g_s(x,y)$ 相同大小的ideal image $\hat{f}_s(x,y)$
- 假設 noise 可忽略:

$$H_s(u,v) = \frac{G_s(u,v)}{\hat{F}_s(u,v)}$$

品質取決於 \hat{f}_s ,應用範圍有限!

Estimation by experimentation

- Experimentation
 - 對點光源(越亮、越小越好) 取樣 (strength of the impulse: *A*)

$$- H(u,v) = \frac{G(u,v)}{A}$$

Estimation by modeling

- Derive a mathematical model according to the basic principles.
 - To know how image was degraded first.
 - Describe the model mathematically.

Estimation by modeling

ModelingEx: 大氣紊流

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

where *k* depends on the nature of the turbulence.

Image restoration approaches

Inverse filtering

$$\hat{F}(u,v) = \frac{G(u,v)}{H(u,v)}$$

$$\hat{F}(u,v) = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

- Even H was precisely estimated,...
- When H has zero or very small values,...

A 480×480 image degraded by a function with k = 0.0025

$$H(u,v) = e^{-k(u^2+v^2)^{5/6}}$$

Cut-off freq. = 70

Cut-off freq. = 85

Wiener filtering

- Least mean square error filtering
 - 最小平均平方誤差濾波
- To minimize the error function

$$-e^2 = E\{(f-\hat{f})^2\}$$

 $S_{\eta}(u, v) = |N(u, v)|^2$: power spectrum of the noise $S_{f}(u, v) - |F(u, v)|^2$: power spectrum of the undegraded image

Wiener filtering

Direct inverse filtering

Inverse filtering with a cut-off freq. of 70

Wiener filtering

Wiener filter is also an adaptive filter.

Left column: Images corrupted by motion blur and additive noise.

加入的雜訊 強度減小

Direct inverse filtering Wiener

Wiener filtering

Review

- Model of image restoration
 - Noise model
- Noise-only: restoration filters
- Degradation functions
 - Estimates of *H*
 - Approaches to restore images

生醫影像研究方法:影像復原